
Performing Loop Integration Using Neural Networks

Ruben Bentley
Level 4 Project, MPhys Theoretical Physics

Supervisor: Professor D. Maître

Department of Physics, Durham University

(Dated: April 17, 2024)

Abstract: Neural network (NN) technology was used to integrate the Feynman parame-

terised integral for the 1 loop process of Higgs boson pair production, from a top loop, over

a phase space region. Randomly sampled phase-space and Feynman parameters were used

to obtain exact integrand values, that were then fitted to the derivative of the neural network.

The neural network then evaluated these integrals over the trained region ≃ 10 times faster

than the Monte Carlo integrator pySecDec, which integrates over specific phase-space con-

figurations. Different activation functions were applied to the neural network to further the

theoretical understanding and accuracy shown in the current literature. The performance of

the architectures differed, because the shapes of their activation function’s derivatives af-

fected the behaviour of their backpropagated gradients during training. The GELU based

architecture was the most accurate, with a mean of 3.9 ± 0.2 correct digits over the trained

phase-space region, beating the tanh-based network 3.4 ± 0.2 digits (the most accurate in

the original literature). Larger batch sizes improved the accuracy of architectures, as the

GELU based network obtained an accuracy of 3.4± 0.3 digits, when trained on a batch size

25 times smaller. Deep GELU networks were slightly less accurate 3.8 ± 0.2 correct dig-

its. GELU based networks had better generalisation for the boundaries of the sample space,

than the softsign, sigmoid, and tanh. The shape of the GELU’s first derivative made it less

susceptible to dead node formation, than the other activation functions tested.

Keywords: Neural Network, Activation Function, GELU, Parametric integration, Backprop

Ruben Bentley Performing Loop Integration Using Neural Networks

Contents

1. Introduction 3
1.1. The Parametric Integral 5
1.2. On Higgs Pair Production 6

2. Architecture Overview 6
2.1. Deep Feedforward Networks 6
2.2. Derivative of the Neural Network 8
2.3. Pre-processing 10

3. Back Propagation and Gradient Descent 11

4. Theory of Training Deep Networks 12
4.1. Loss Optimisation Landscape 12
4.2. Replicas 14
4.3. Xavier Initialisation 14
4.4. Learning Rate 15

5. Results 15
5.1. Activation Functions ϕ(x) 17
5.2. Softsign 19
5.3. The Logistic Sigmoid and the Hyperbolic Tangent 20
5.4. GELU 23

5.4.1. GPU vs CPU 24
5.4.2. CPU Trained GELU Architectures 24

5.5. Cornering 25

6. Conclusion 26

Acknowledgments 27

References 27

Summary For General Audience 30

A. Activation Function Derivatives 31

B. Optimiser 32

C. Machine Performance Parameters 33

2

Ruben Bentley Performing Loop Integration Using Neural Networks

1. INTRODUCTION

Due to the transition of the Large Hadron Collider (LHC) from a resonance discoverer to a pre-
cision machine, the demand for accurate and time effective calculations has never been more
necessary [1]. An enormous amount of data is collected from the high energy proton-proton col-
lisions at the LHC. This data is used to generate Feynman diagrams (graphical representations
of scattering events), and their respective Feynman parameterised integrals, which are evaluated
to obtain scattering amplitudes. Different techniques are implemented to perform these tasks,
with the aim of collecting statistically large and reliable datasets. Therefore, it is important to
develop existing techniques or introduce alternative ones entirely, to refine theoretical predic-
tions.
This paper forwards the investigation of a new integration technique that evaluates Feynman
parameterised integrals with neural network (NN) technology [2]. Where the derivative of the
neural network (derivative neural network) is trained to the integrand of the integral, and then
the neural network is used to evaluate that integral. This is explained in Section 2.2 and demon-
strated schematically in Figure 1.

NN Integral

dNN
dx1...dxk

Integrand

FIG. 1: Schematic diagram shows how the integrand of the Feynman parameterised integrals is used to

train the derivative of the network and get the integral

The parametric integrals that can be solved with this technique have the following form below:

I(s1, ..., sm) =

∫ 1

0

dx1...

∫ 1

0

dxkf(s1, ..., sm;x1, ..., xk) , (1.1)

where si are phase-space parameters and xi are the auxiliary variables (Feynman parameters)
that are integrated. The performance of this network architecture was compared to the Py-
SecDec [3] Monte Carlo (MC) integrator.
The PySecDec [3] MC integrator is one of many MC integrators used in industry to find the
scattering amplitudes of scattering events. It is dynamic – being able to do this for many pro-
cesses, when standard model (SM) or beyond standard model (BSM) physics is applied. It
trains to specific phase-space configurations, so its accuracy scales by a factor of 1√

N
[4], where

N is the number of trained samples. However, because of the enormous amounts of Feynman
diagrams being generated in the proton-proton inelastic collisions at the LHC, their speed is
insufficient to produce reliable and statistically large datasets in the future. The progression of
physics will be technologically limited by the speed of MC integrators [5], which integrate over
specific phase-spaces, as shown in Figure 2a.
In this paper, we argue how this method is a necessary alternative to the predominantly used
Monte Carlo (MC) integration programs, as the NN is trained over a bounded phase-space
region, seen in Figure 2b. We sacrifice the accuracy of the integrals, for the speed of their

3

Ruben Bentley Performing Loop Integration Using Neural Networks

(a)

s

x

(b)

s

x

FIG. 2: (a) Schematic diagram of the MC sampling the Feynman parameters xi for specific

phase-spaces si. (b) Schematic diagram of the NN sampling the phase-space parameters si and the

Feynman parameters xi.

computation. The Feynman parameters and phase-space parameters are treated as equal contri-
butions to network, unlike other NN based integration techniques [6–8]
Once trained, the NN can produce integrals of specified accuracy faster than the PySecDec
MC integrator, since it is GPU compatible and can calculate a large number of integrals syn-
chronously (see Table II). This NN approach lowers the strain on computational resources,
resulting in an increased computational efficiency and added environmental benefits.
The preceding research paper, which introduced this architecture [2] showed superior speed
to the PySecDec [3] MC integrator when solving Higgs boson pair production integrals over
a phase-space region, to the same accuracy. The sigmoid and tanh activation functions were
applied to the derivative neural network architecture, with the tanh outperforming the sigmoid
for the 1 loop and 2 loop process.
In this study, the Gaussian error linear unit (GELU) [9], was applied to the architecture, and
outperformed the classical activation functions. In addition, the softsign activation function
was used to explain the relationship between the shapes of the activation function’s derivatives
and the networks performance, which was left for future research in the original literature [2].
Promising data is shown throughout this report to support future applications of NN technology
in particle phenomenology. Neural network architectures have also been successful as event
generators in the form of General Adversarial Networks (GANs) [5].

The organisation of this paper is as follows: Section 2 builds the understanding of the neural
network architecture; Section 3 introduces back propagation and training; Section 4 goes over
the theory of deep learning, which is required to explain and discuss the results shown in Section
5. This paper is concluded in Section 6.

4

Ruben Bentley Performing Loop Integration Using Neural Networks

1.1. The Parametric Integral

The Feynman parameterised integral, for a specific scattering event, is integrated to find the
scattering amplitude of the event. The scattering amplitude describes how particles scatter for
different phase-space configurations. In this project, neural networks were used to numerically
integrate the Feynman parameterised integrals for Higgs boson pair production from a top quark
loop. This process is shown in Figure 3, and the integral (for the 1 loop process) is:

I(s12, s14,m
2
H ,m

2
t) =

∫ 1

0

dx1

∫ 1

0

dx2

∫ 1

0

dx3
1

F2
1

. (1.2)

The F1 is a second Synmanzik polynomial, a polynomial of the phase-space and auxiliary
variable space:

F1 = m2
t + 2x3m

2
t + x2

3m
2
t + 2x3m

2
t − x2s14 + 2x2x3m

2
t

−x2x3m
2
H + x2

2m
2
t + 2x1m

2
t + 2x1x3m

2
t − x1x3s12

+2x1x2m
2
t − x1x2m

2
H + x12m

2
t .

(1.3)

FIG. 3: Feynman diagram for Higgs boson pair production, from a virtual bottom/top quark loop.

Figure 1l from the [10].

Eq. (1.2) cannot be solved analytically and was thus solved numerically, requiring the second
Szymanzik polynomial F1 to be positive semi-definite. Therefore, a euclidean region of phase-
space si was chosen [3] to make the second Szymanzik polynomial F1 positive semi-definite.
This Feynman parameterised integral was also integrated in the preceding paper [2], along with
the chosen phase-space Eq. (1.4), providing useful comparison:

m2
t ≡ 1 , −30 ≤ s12

m2
t

≤ −3 , −30 ≤ s14
m2

t

≤ −3 , −30 ≤ m2
H

m2
t

≤ −3 , (1.4)

where F1 > 0.
This region of phase-space is non-physical, so the scattering amplitudes that were calculated

using this phase-space are not observed. The purpose of this investigation was to provide mo-
tivation for this next step of the research where the physical region is integrated. To integrate
the physical phase-space region, the network must incorporate complex analysis, as this region
may introduce poles to the integrals. Once this next step is successful, this method can be ap-
plied successfully to industry, but first its implementation needs to be tested at a simpler level
of complexity.

5

Ruben Bentley Performing Loop Integration Using Neural Networks

1.2. On Higgs Pair Production

The discovery of the Higgs boson [11] at the LHC, provided experimental validation for the
spontaneous symmetry breaking mechanism, that gives mass to the weak bosons. In the SM, the
Higgs has a fixed set of scattering possibilities, which remain consistent and cannot be altered
unless modifications beyond the standard model are introduced. The leading contribution for
Higgs boson pair production, shown in Figure 3, is the loop-induced gluon-fusion process from
virtual heavy quarks (predominately tops) [12]. Alternative Higgs pair-production scattering
events have cross sections an order of magnitude smaller [13]. The observation of Higgs pair-
production is rare, their cross sections are small comparatively to other processes [14], hence it
is addressed theoretically in many papers [15, 16].
It is advantageous to transform scattering amplitude integrals from momentum space to Feyn-
man parameter space, as it assists with numerical computation [3]. Feynman parameterisation
is used to express the propagators, in the momentum-space integral, as terms in an integral over
the Feynman parameters [17]. Allowing the momentum space to be integrated out, leaving the
integration over the Feynman parameters:

Ii =

∫ 1

0

N−1∑
j=1

dxjx
υj−1
j

Ui(−→x)expoU(ϵ)

Fi(
−→x , sij)expoF(ϵ)

. (1.5)

This is the form of a Feynman parameterised integral, shown in [3], with L loop and N propaga-
tors raised to the power of vi. This method of integration can be applied to scattering processes
with a Feynman parameterised integral of this form. The U is the first synmanzik polynomial,
unlike the second Eq. (1.3), it is a polynomial of only the Feynman parameter space.

Feynman parameterised integrals are versatile, being applicable to various other fields of
physics, such as gravitational wave physics [18].

2. ARCHITECTURE OVERVIEW

2.1. Deep Feedforward Networks

For this technique, deep feedforward neural networks (DNN) were implemented to calculate
the integrals. The structure for the deep feedforward network is shown below in Figure 4. The
network’s structure is equivalent to a directed acyclic graph (DAG), because there are no loops
in the graph and all the connections between the nodes are directed. The DAG structure assists
the forward propagation of the network. In forward propagation, the information travels from
the input layer, through the hidden layers and finally to the output layer.
At each node the incoming data undergoes a weighted sum Eq. (2.2), and is non-linearised
with an activation function ϕ, Eq. (2.3). The activated node’s output is then passed onto the
subsequent layer. This process repeats until the final layer is reached, where the output of the
network is defined by Eq. (2.4). The activation function allows the network to learn complex
relationships with the training data (see Section 5.1).

The DNN has artificial neurons called nodes. The network’s nodes are grouped into the

6

Ruben Bentley Performing Loop Integration Using Neural Networks

a
(0)
1

a
(0)
2

a
(0)
m

...

a
(1)
1

a
(1)
2

a
(1)
3

a
(1)
h1

...

a
(2)
1

a
(2)
2

a
(2)
3

a
(2)
h2

...

a
(3)
1

a
(3)
2

a
(3)
3

a
(3)
h3

...

Y1

...

input
layer

hidden layers

output
layer

FIG. 4: Deep Neural Network structure for Deep Feedforward Network

layers as shown in Figure 4. The first layer of a network with n auxiliary variables xi and m-n
phase-space parameters si can be expressed as:

a
(0)
i = xi for i ≤ n , a

(0)
i = si for n < i ≤ m , (2.1)

where the a
(l)
i is the output for node i in layer l. The nodes of the network are given weights

w
(l)
ij for all their connections to subsequent layer nodes, which are represented as arrows in

Figure 4. A bias b(l)i is intrinsic to each of the layers:

z
(l)
i =

∑
j

w
(l)
ij a

(l−1)
j + b

(l)
i , (2.2)

a
(l)
i = ϕ(z

(l)
i) , (2.3)

where the ϕ is an activation function. The final output of an L layer deep neural network is

Y1 =
∑
j

w
(L+1)
j a

(L)
j + b(L) . (2.4)

In this method the Feynman parameters xi and phase-space parameters si have an equal con-
tribution to the output of the network, as they are both inputs to the network.
Once the network is successfully trained, it can integrate the Feynman parameterised integral
over the trained phase-space region. Unlike the PySecDec Monte Carlo integrator, where spe-
cific Phase-spaces are integrated, Figure 2.
This DNN solves a large number of integrals synchronously over the trained phase-space, be-
ing as one forward pass is required to obtain the relevant terms. Hence, it is faster than the
PySecDec MC integrator, which integrates over specific phase-spaces (see Table II).
This method is applicable to all integrals of this form, Eq. (1.1). The network parameters w(l)

ij

and b
(l)
i are initialised at the beginning of training (see Section 4.3), and were updated to better

fit the training data. Throughout this paper the network parameters are grouped as:

(w
(l)
ij , b

(l)
i) ∈ θ , ∀i, j, l . (2.5)

7

Ruben Bentley Performing Loop Integration Using Neural Networks

2.2. Derivative of the Neural Network

This subsection details the derivation of the derivative neural network. This structure can
be seen in Figure 5. By Eq. (2.1), the derivative of an input node with respect to an auxiliary
variable xm is:

da
(0)
i

dxm

= δmi . (2.6)

The subsequent layer first derivatives of the activation value with respect to xm are shown to be:

da
(l)
i

dxm

= ϕ′(z
(l)
i)

dz
(l)
i

dxm

= ϕ′(z
(l)
i)

(∑
j

w
(l)
ij

da
(l−1)
j

dxm

)
. (2.7)

Where ϕ′ is the derivative of the activation function. The necessary derivatives for the ac-
tivation functions investigated are in Appendix A. To obtain the derivative network, each node
was differentiated with respect to (w.r.t) all the auxiliary variables xi present in the integral that
was being solved.
For the I1 integral there are three auxiliary variables. To calculate the derivative of a node in
layer l with respect to two auxiliary variables xm and xr, chain rule is used and the following
expression is achieved:

d2a
(l)
i

dxrdxm

= ϕ′′(z
(l)
i)

dz
(l)
i

dxr

dz
(l)
i

dxm

+ ϕ′(z
(l)
i)

d2z
(l)
i

dxrdxm

=

ϕ′′(z
(l)
i)

(∑
j

w
(l)
ij

da
(l−1)
j

dxr

)(∑
j′

w
(l)
ij′

da
(l−1)
j′

dxm

)
+ ϕ′(z

(l)
i)

(∑
j

w
(l)
ij

d2a
(l−1)
j

dxrdxm

)
.

(2.8)

With the expression for the input layer being

d2a
(0)
i

dxrdxm

= 0 . (2.9)

The derivative of the network nodes for layer l with respect to 3 auxiliary variables x1, x2

and x3 is expressed as a linear combination of activation function derivatives to the order of the
integral:

d3a
(l)
i

dx1dx2dx3

= ϕ(3)(z
(l)
i)

dz
(l)
i

dx1

dz
(l)
i

dx2

dz
(l)
i

dx3

+ϕ′′(z
(l)
i)

(
d2z

(l)
i

dx1dx2

dz
(l)
i

dx3

+
d2z

(l)
i

dx2dx3

dz
(l)
i

dx1

+
d2z

(l)
i

dx1dx3

dz
(l)
i

dx2

)

+ϕ′(z
(l)
i)

d3z
(l)
i

dx1dx2dx3

.

(2.10)

where
dnz

(l)
i

dx1...dxn

=
∑
j

w
(l)
ij

dna
(l−1)
j

dx1...dxn

, (2.11)

8

Ruben Bentley Performing Loop Integration Using Neural Networks

α
(l)
i =

dna
(l)
i

dx1...dxn

, γn =
∑
j

w
(L+1)
ij

dna
(L)
j

dx1...dxn
(2.12)

α
(l)
i represents the derivative of the activation value a(l)i (activation value of node i in layer l)

w.r.t the Feynman parameters of the integral. γn is the output of the derivative neural network
for integrals with n auxiliary variables.
The output of the 1 loop integral with 3 auxiliary variables is γ3, and the output of the 2 loop
integral in [2] with 6 auxiliary variables is γ6. The output of the network is generalised as:

γn =
dNN (s1, ..., sm;x1, ..., xk)

dx1...dxn

. (2.13)

To obtain accurate integral predictions the derivative network was trained to the integrand. Once
trained successfully, the integral values are calculated using the forward pass of the network
Figure 1, Eq.(2.14).∫ 1

0

dx1

∫ 1

0

dx2

∫ 1

0

dx3
dNN (s12, s14,m

2
H ;x1, x2, x3)

dx1dx2dx3

=

NN (s12, s14,m
2
H ; 1, 1, 1)−NN (s12, s14,m

2
H ; 1, 1, 0)

−NN (s12, s14,m
2
H ; 1, 0, 1)−NN (s12, s14,m

2
H ; 0, 1, 1)

+NN (s12, s14,m
2
H ; 0, 0, 1) +NN (s12, s14,m

2
H ; 0, 1, 0)

+NN (s12, s14,m
2
H ; 1, 0, 0)−NN (s12, s14,m

2
H ; 0, 0, 0) = I1

(2.14)

This process can be generalised and continued for higher dimensional integrals, processes
with more degrees of freedom, in particular the two loop integral with 6 degrees of freedom [2].
For each extra degree of freedom added to the integral, the number of terms in the derivative
activation value grows immensely. Higher loop level processes will lower network performance,
and the strain on computational resources will increase.

a
(0)
1

a
(0)
2

a
(0)
m

...

α
(1)
1

α
(1)
2

α
(1)
3

α
(1)
h1

...

α
(2)
1

α
(2)
2

α
(2)
3

α
(2)
h1

...

α
(3)
1

α
(3)
2

α
(3)
3

α
(3)
h1

...

γn

...

input
layer

hidden layers

output
layer

FIG. 5: Structure for the derivative of the Deep Neural Network with respect to the Feynman

parameters xi

9

Ruben Bentley Performing Loop Integration Using Neural Networks

2.3. Pre-processing

The parametric integral’s phase-space and Feynman parameters are treated as equal contri-
butions when modelling the network, this separates it from other integration approaches [19].
An important contribution for the convergence of the network is the form of the input data [20].
Unsuitable input data would inhibit the learning potential of the network. Therefore, it was vital
to pre-process the input data to maximise the efficiency of the network.
Pre-processing is an important aspect of machine learning, and is used when the input data is in
a form that makes it difficult for the NN architecture to learn. Eq. (2.2) shows that the inputs of
the network a

(0)
i are given an equal contribution to the weighted sum in the first layer. However,

the si inputs have a larger magnitude than the xi, which causes the network to be unstable.
Thus, the si inputs of the network where scaled linearly, so the inputs would have a similar
magnitude - assisting network convergence. The new phase-space parameters s̃i were inputted
into the derivative network to obtain predictions for the integrand (γn)i. Their boundaries are
defined as:

s̃i =
si
30

, −1 ≤ s̃i ≤ −0.1 . (2.15)

Further pre-processing included normalising the parametric integral from Eq. (1.1) at the centre
of a hypercube I → Ĩ [2],

Ĩ(s1, ..., sm) =
I(s1, ..., sm)

f(s1, ..., sm;
1
2
, ..., 1

2
)
=

∫ 1

0

dx1...

∫ 1

0

dxk
f(s1, ..., sm;x1, ..., xk)

f(s1, ..., sm;
1
2
, ..., 1

2
)

. (2.16)

A Korobov transform [21, 22] was applied to improve the convergence of the integral, as it
is shown to reduce the variance of multidimensional integrals [2, 3, 23]. Applying a Korobov
transform to the integral from Eq. (1.1) gives

I(s1, ..., sm) =

∫ 1

0

dt1...

∫ 1

0

dtkw1(t1)...wk(tk)f(s1, ..., sm;x1(t1), ..., xk(tk)) . (2.17)

The weight of the transform w(t) is defined as∫ 1

0

w(t)dt = 1 (2.18)

and gives ∫ t

0

w(t′)dt′ = x(t) . (2.19)

The weight transformation chosen, was the same transformation present in [2].

x(t) = t2(3− 2t) , w(t) = 6t(1− t) . (2.20)

This transformed the integral to

Ĩ(s1, ..., sm) =

∫ 1

0

dt1...

∫ 1

0

dtk
w1(t1)...wk(tk)f(s1, ..., sm;x1(t1), ..., xk(tk))

f(s1, ..., sm;
1
2
, ..., 1

2
)

. (2.21)

This integral was then normalised between 0 and 1, as it increased the speed of network con-
vergence because the elements of the s-x rank-1 lattice had a similar magnitude.

Î =
Ĩ

max(Integrand)
. (2.22)

10

Ruben Bentley Performing Loop Integration Using Neural Networks

3. BACK PROPAGATION AND GRADIENT DESCENT

When training the derivative of the network, a rank-1 lattice of randomly sampled s-x pa-
rameters was inputted in the forward direction of the derivative network to obtain a prediction
for the integrand (γn)i, by Eq. (2.13). The accuracy of the prediction (γn)i was dependent on
the configuration of the network parameters θ, Eq. (2.5).
The network parameters θ were updated, Eq. (3.1), with the ADAM [24] gradient descent
optimiser. Adam merges the best assets from adaptive learning rate and momentum based op-
timisers, making it highly effective for training deep neural networks. Its hyperparameters did
not need to be tuned to achieve optimally trained networks (see Appendix B for additional
information).

θ +∆θ → θ (3.1)

The observed values Ŷi were obtained when the rank-1 s-x parameter lattice was plugged
into integrand (1

F2
1

integrand for the 1 loop integral). To test the accuracy of the predictions

(γn)i with the observed values Ŷ , a mean squared error loss function was used:

lossMSE =
1

N

N∑
i=1

(Ŷi − (γn)i)
2 = MSE(Ŷi, (γn)i) (3.2)

where N is the lattice size. A lower loss indicated that the network fitted to the training data
better (see Section 4.1).

For the 1 loop integral, the derivative of the loss function w.r.t to an arbitrary network pa-
rameter θ, is expressed as a product of backpropagated gradients:

∂L(X, θ)

∂θ
=

∂L(X, θ)

∂γ3

∂γ3

∂α
(l)
i

∂α
(l)
i

∂z
(l)
i

∂z
(l)
i

∂θ
. (3.3)

Backpropagation (backprop)[25] allows the information from the loss to flow in the backwards
direction of the network - from the network output, through the hidden layers, and to the input
- to calculate the gradients of the loss with respect the network parameters. To lower the loss,
the optimiser minimised these gradients (obtained from backprop) by updating the network
parameters to get more accurate integrand predictions (γn)i.
This form of the loss gradient, displays the significant impact that small changes in the network
components can have on its overall performance. The second term is the partial derivative for
the derivative activation value α

(l)
i Eq. (2.12) w.r.t the weighted sum at a node z

(l)
i Eq. (2.2).

This partial derivative can be expressed as a sum of the activation value derivatives, similar to
Eq. (2.10), however it contains a derivative one order greater:

11

Ruben Bentley Performing Loop Integration Using Neural Networks

∂α
(l)
i

∂z
(l)
i

= ϕ(4)(z
(l)
i)

dz
(l)
i

dx1

dz
(l)
i

dx2

dz
(l)
i

dx3

+ ϕ(3)(z
(l)
i)

∂

∂z
(l)
i

(dz(l)i

dx1

dz
(l)
i

dx2

dz
(l)
i

dx3

)
+ϕ(3)(z

(l)
i)

(
d2z

(l)
i

dx1dx2

dz
(l)
i

dx3

+
d2z

(l)
i

dx2dx3

dz
(l)
i

dx1

+
d2z

(l)
i

dx1dx3

dz
(l)
i

dx2

)

+ϕ′′(z
(l)
i)

∂

∂z
(l)
i

(
d2z

(l)
i

dx1dx2

dz
(l)
i

dx3

+
d2z

(l)
i

dx2dx3

dz
(l)
i

dx1

+
d2z

(l)
i

dx1dx3

dz
(l)
i

dx2

)

+ϕ′′(z
(l)
i)

d3z
(l)
i

dx1dx2dx3

+ ϕ′(z
(l)
i)

∂

∂z
(l)
i

(d3z
(l)
i

dx1dx2dx3

)
.

(3.4)

This gradient demonstrates the consequential affect the shapes of activation functions and their
derivatives have on network convergence. This will be discussed in Section 5.1.
The network parameters were trained for a fixed number of epochs. During each epoch a
backwards computational graph was generated, with all the back-propagated gradients. At the
end of each epoch, the gradients were zeroed. During training the randomly sampled rank-1
lattice of s-x parameters, was changed every 5 learning epochs, to prevent the network over
training specific features of that lattice. This process was repeated in a training loop, until the
loss plateaued, and the network converged to a final state.
Once the derivative network was optimally trained to the integrand of the integral, the forward
pass of the network was used to calculate the integral, Eq. (2.14)
The pyTorch [26] python library was employed to code and train the neural network architec-
ture, as it can perform complex tensor calculations, and can easily generate back-propagated
computational graphs.

4. THEORY OF TRAINING DEEP NETWORKS

4.1. Loss Optimisation Landscape

The MC integrator’s loss scales by a factor of 1√
N

, where N is the number of trained sam-
ples. This allows the MC integrator to push its accuracy much further than the derivative neural
network, as we sacrifice accuracy for speed. Hence the objective of this research is to push the
loss of the derivative neural network to lower values.
The gradient descent training algorithm lowered the loss of the network, by producing the model
which best represented the data. It is a regression task. In most applications of machine learning
over-training can damage the accuracy of the model.
Usually, regularisation techniques are implemented to mediate the damaging affects over famil-
iarity with training data has, such as limiting its ability to generalise unseen data. Training data
is noisy in most instances of deep learning.
However the uniqueness of this application, is that the model does not require regularisation
techniques to produce excellent results because the derivative neural network is fitted directly
to the integrand [2] (zero noise).

Figure 6a shows a simplified schematic diagram for the loss surface. The loss surface is the

12

Ruben Bentley Performing Loop Integration Using Neural Networks

(a)

L
os

s

θ
(b)

L
os

s

θ

FIG. 6: (a) Schematic diagram of loss vs an arbitrary network parameter θ. (b) Schematic diagram of

gradient descent.

topology of the loss function for different network parameter configurations θ of the architecture
during training [27]. The points of zero gradient represent theoretical critical points that the
network can successfully train to or get stuck at. The diagram clearly shows the presence of
sub-optimal minima; areas with sharp gradients and the global minimum.
The global minimum is the lowest loss value that the network architecture can obtain. In deep
networks, there are a high number of local minima with analogously low loss values, so the
network does not need to be trained to the global minimum to produce sufficient accuracy[27–
29].
The training of an arbitrary network is shown in Figure 6b. The starting points of the arrows
denotes their initialisation and the arrow’s size represents their learning rate, which is used to
update the network parameters θ. The consequences of poor initialisation are prevalent in this
diagram, as the network may train to worse minima (red) or diverge completely (blue) (see
Section 4.3). The learning rate is equally important (see Section 4.4). The red arrow shows
an oscillating θ around a local minima, this can happen if the learning rate doesn’t change
during training. The purple arrow shows a steady approach to an optimal local minimum. The
green arrow displays how utilising an adaptive learning rate improves the speed of network
convergence to a good local minimum, however there is the risk that the learning rate may be
too large at certain points of the optimisation, and it may overshoot into worse local minima.
The blue arrow shows an example of the network diverging, this can happen if the learning rate
is too large and the θ hits a cliff, significantly worsening the network’s performance. There may
be flat regions in the loss topology, where the loss doesn’t decrease until a significant amount
of training occurs.
The loss surface evolves during training, hence there are many other occurrences that arise. To
maximise the accuracy of the derivative neural network, strategies were implemented to reach
optimal local minima: such as providing good initialisation, and optimally tuning learning rates.

13

Ruben Bentley Performing Loop Integration Using Neural Networks

4.2. Replicas

Separate networks, with the same architecture, were trained n times. Although the accuracy
was similar, they were not repeats they were replicas Ri. Each replica experienced a different
initialisation and converged to different final solutions, local minima (see Section 4.1).
The replicas were trained with the same methodology, so their integral estimates had similar
means and variances σ2. The replica’s estimates were averaged R̃. Training more replicas
reduces the error in the mean, provided the means are close to the true values . This method
of averaging the replicas greatly increases the accuracy of the integrals result. This lowered the
estimate’s standard deviations σ by a factor of square root of n [4]
Therefore, it was ideal to have as many similar efficient tests as possible to get a more precise
mean estimate:

R̃ =
R1 +R2 + ...+Rn

n
, v =

σ√
n

, (4.1)

v is the standard deviation of the mean, which was taken as the uncertainty of the averaged
replicas.
Figure 7 shows the significance of increasing the number of replicas n. In this experiment 3− 5

replicas were trained. The error for n averaged replicas decreased by a factor of 10 to the power
of the y axis (decreased by a factor of the square root of n). For 100 replicas the error would
decrease by a factor of 10, because the y coordinate is -1, and for 10000 replicas the error will
decrease by a factor of 100 because the y coordinate is -2.

FIG. 7: The log10(error) of the replicas changing with the number of replicas

During training the model’s accuracy was collected every 100 epochs, and the best model
achieved during training was saved to be averaged with the replicas. Each replica took 7-10
hours to train.

4.3. Xavier Initialisation

The schematic diagram for gradients descent, Figure 6b demonstrates the importance of
initialisation. The network bias parameters were initially set to zero, and the network weights
were initialised with uniform Xavier initialisation [30]:

W ∼ U
[
−
√

6 · gain
nin + nout

,

√
6 · gain
nin + nout

]
, (4.2)

14

Ruben Bentley Performing Loop Integration Using Neural Networks

where nin is the number of inputs and nout is the number of outputs. The gain factor was
adjusted for different activation functions and network sizes, to ensure that the variance of the
weights was large enough for successful learning, limiting the damaging affects of vanishing
gradients or dead derivative activation node formation (see Section 5.3). Table I dipslays the
gain values for each architecture.

4.4. Learning Rate

The learning rate ϵ is the most important hyperparameter in deep learning (see Section 4.1).
Learning rates that were too large caused network divergence, and learning rates that were too
small - at the start of training - caused sub-optimal network convergence. The initial learning
rate for each derivative network architecture was tuned iteratively, with the best ϵ being chosen
for the subsequent replica network training.
The built in pyTorch ReduceLROnPlateau(optimizer, mode = ’min’, factor, patience) scheduler
was implemented to decrease the learning rate of the optimizer over training. The reasons are
shown schematically with the purple arrows in Figure 6b, as it allows the derivative network to
train to and reach lower loss in the optimisation surface.
The ReduceLROnPlateau scheduler, decreased the ϵ by a tuned factor, when the loss plateaued
for a selected number of epochs (patience). It was found that a slower decrease in the learning
rate, as seen in Figure 8, lead to increased accuracy. This was due to the network being able to
train more s-x configurations.

FIG. 8: The log10(learning rate) over training

5. RESULTS

The P -value equation [2], Eq. (5.1), was used to compare the network’s estimates e for the
scattering amplitudes with the true values t from the Monte Carlo integrator, Pysecdec.

P = log10

(∣∣∣∣e− t

t

∣∣∣∣) . (5.1)

The negativity of the P -value is the number of correct digits the network had obtained for that
specific phase-space configuration. For example, a P -value of −n would indicate that the net-
work was accurate for n digits in that phase-space.

15

Ruben Bentley Performing Loop Integration Using Neural Networks

P -value histograms were used to show the accuracy of the phase-space region trained, and to
compare accuracy between the different architectures trained. The mean P -value, number of
correct digits, was taken to be the networks measure of accuracy.
Figure 9a demonstrates the importance of effective training, as there is strong positive corre-
lation between lower validation loss (unseen set) and more negative P -values. They are not
directly proportional, as the validation set contains a handful of s-x combinations and does not
represent the entire phase-space region.
Throughout training, the P -value was collected every 100 epochs. The P -value decreased
throughout training with some noise, and eventually plateaued (reached a local minima). The
network was saved when lower and lower P -values were achieved, Figure 9b. The state of the
network with the best P -value was used as a replica (see Section 4.2).

(a) (b)

FIG. 9: (a) log10(Validation loss) vs the mean P -value, for a 3 layer 130 hidden unit GELU derivative

network over training. (b) Mean P -value, for a 3 layer 130 hidden unit GELU derivative network over

training (red), and model save points (black)

The logarithmic ratio (R-value) Eq.(5.2) shows the quality of the estimates. R-value his-
tograms centered around 0, indicate that there is no damaging bias in the network. Thinner
R-value histograms have more accurate integral predictions:

R = log10

(∣∣∣∣et
∣∣∣∣) . (5.2)

Once the replicas were averaged, the error of the mean v was taken as the networks’ un-
certainty, Eq. (4.1). Histograms of log10

(
v

|e−t|

)
, referred to as log10(est/true) on Figure 11a

and Figure 21b, were used to compare the uncertainty v and true error present in the replica
averaged architectures [2].
The straight lines (the zero of these histograms) represent the points where the true error was
equal to the uncertainty v. Points lying to the right of this line, have a true error less than the
uncertainty v and points to the left have a true error greater than the uncertainty.

Table I summarises the findings of this report. Figure 10 and Figure 11 show the P -value,
R-value and log(est/true) histograms for the architectures trained with the GPU. Table II shows
the superior speed of the neural network compared to the PySecDec integrator.
The GELU activation function was the most accurate activation function for the 1 loop integral.

16

Ruben Bentley Performing Loop Integration Using Neural Networks

activation layers nodes epochs lattice size gain ϵ machine Replicas P -value

I1 softsign 3 130 2000 80000 1.5 0.01 GPU 3 −0.8± 0.2

I1 sigmoid 3 130 15000 80000 2 0.001 GPU 3 −2.9± 0.3

I1 tanh 3 130 10000 75000 1.5 0.001 GPU 5 −3.4± 0.2

I1 GELU 3 130 10000 30000 1.5 0.01 GPU 3 −3.9± 0.2

I1 GELU 10 60 10000 12500 1.5 0.01 GPU 3 −3.8± 0.2

I1 GELU 3 100 10000 500 1.5 0.01 CPU 5 −3.1± 0.3

I1 GELU 10 30 10000 500 1.5 0.01 CPU 5 −3.0± 0.3

I1 GELU 10 60 10000 500 1.5 0.01 CPU 5 −3.4± 0.3

TABLE I: P -values for the following network configurations and parameters

The tanh activation function was more accurate than the sigmoid, displaying the repeatability
of the previous investigation [2]. The softsign performed poorly. The reasons behind this are
explained in the following subsections (See Appendix A for the activation function derivatives).

≃ 4 digits

PySecDec 0.8ms

NN 0.05ms

TABLE II: Approximate run times to integrate 27000 integrals, to 4 digits of accuracy, over the trained

phase-space region Eq. (1.4)

5.1. Activation Functions ϕ(x)

Activation functions ϕ transform the weighted sums of neural networks, Eq. (2.2). If
activation functions were omitted, the forward pass of the network would be linear. The
architecture would have limited potential modelling complex behaviours, because the back
propagated gradients would be constant. Activation functions and their derivatives introduce
non-linearity to the weighted sums of the derivative neural network, Eq. (2.11).
The non-linear derivative activation values α

(l)
i , were passed through the derivative network

during forward propagation, and contributed to the subsequent layer nodes weighted sums,
which were transformed non-linearly again. This process repeated until the output layer.
Deep feed-forward networks have numerous hidden layers, the activation functions are used
to calculate the outputs of the nodes and allow neural networks to learn sophisticated patterns
and relationships with the training data. Figure 12 shows the shapes of the activation functions
applied to the derivative neural network throughout this investigation.
The choice of activation function is an important factor for the success of deep learning
architectures, as seen in Table I. Different activation functions greatly affect the architecture’s

17

Ruben Bentley Performing Loop Integration Using Neural Networks

FIG. 10: (a) P -value histograms, for the five replica averaged architectures trained with the

GPU(shown in Table I). Digits of accuracy for the different architecture.

(a) (b)

FIG. 11: (a) log10(est/true) histograms and (b) R-value histograms for the replica averaged

architectures trained with the GPU, shown in Figure 10.

learning capacity, efficiency and stability due to their shapes[30].
In deep feed-forward networks, the most important derivative is the first derivative, as it is the

only derivative that affects the size of the backpropagated gradients, in most cases. Whereas
for the derivative neural network, the gradients of the derivative activation values contain a
mixture of activation function derivatives (to order one more than the integral), Eq. (3.4).
Therefore, when selecting activation functions for the derivative neural network, their higher
order derivatives must possess favourable traits. The first four derivatives of the activation
functions from Figure 12 are shown in Figure 13.

18

Ruben Bentley Performing Loop Integration Using Neural Networks

FIG. 12: Activation function ϕ(x) values for input x.

FIG. 13: First four derivatives of activation function ϕ(x) values for input x. Softsign (green), tanh

(yellow), sigmoid (blue) and GELU (red).

5.2. Softsign

The softsign [31] is a classical activation function:

softsign(x) =
x

1 + |x| . (5.3)

The softsign demonstrated poor accuracy, 0.8 ± 0.2 correct digits, because its 2nd and 4th
derivatives have jump discontinuities at x = 0, Figure 13. These jump discontinuities create
an instability in the network derivative activation values, as 2nd and 4th derivative activation
values that are around 0 would cause the back-propagated gradients Eq. (3.4) to be unstable.
This can be seen in Figure 14, where the 2nd derivative of the activation value w.r.t to x1 and x2

and the derivative activation values are volatile, leading to poor P -values Figure 15. In addition,
the softsign’s errors were dominated by the true error, shown in Figure 11a (points mostly on
the left of its zero line x = 6), indicating that a systematic variation is present due to the nature
of its derivatives.

19

Ruben Bentley Performing Loop Integration Using Neural Networks

(a) (b) (c)

FIG. 14: Mean (central line) and standard deviations (std = boundary of shaded region), for each layer

of the 3 layer 130 hidden softsign based derivative neural network, collected during the training (10000

epochs). The standard deviations (std) where divided by a factor. (a) Activation values (std/20). (b)

Second derivative of activation value with respect to x1 and x2 auxiliary variables (std/20). (c)

Derivative activation values (std/100)

Therefore, the activation function’s derivatives must be continuous for successful network con-
vergence.

FIG. 15: Mean (black) and the standard deviation (red area boundary) of the P -value over training, for

a 3 layer 130 hidden unit softsign based derivative neural network

5.3. The Logistic Sigmoid and the Hyperbolic Tangent

σ(x) =
1

1 + e−x
(5.4)

tanh(x) =
ex − e−x

ex + e−x
(5.5)

The tanh and sigmoid networks were more accurate than the softsign, because their derivatives
are continuous, which lead to stable activation and derivative activation values, Figure 16.

Derivative networks with tanh units were approximately half a digit more accurate than the
logistic sigmoid based networks, with 3.4 ± 0.2 correct digits compared to 2.9 ± 0.3. This
superior accuracy was seen in [2], where Professor Maître’s tanh based network, for the 1 loop
integral, peaked at approximately 3.4 digits, Figure 17. The similar peaks of both 1 loop tanh
based networks (see Figure 11) demonstrates the replicability of this integration technique.

20

Ruben Bentley Performing Loop Integration Using Neural Networks

(a) (b) (c)

(d) (e) (f)

FIG. 16: Mean (central line) and standard deviations (std = boundary of shaded region), for each layer

of the 3 layer 130 hidden derivative neural network, collected during the training. The standard

deviations (std) where divided by a factor. Subplots (a), (b) and (c) were obtained from a sigmoid based

network, and subplots (d), (e) and (f) were obtained from a tanh based network. (a)(d) Activation values

(std/20). (b)(e) Second derivative of activation value with respect to x1 and x2 auxiliary variables

(std/20). (c)(f) Derivative activation values (std/100). Sampled over 20000 epochs.

−8 −6 −4 −2

p

0

1000

2000

3000

4000

5000

fr
eq

u
en

cy

1L sigm

1L tanh

2L sigm

2L tanh

FIG. 17: Left panel in Figure 3 from [2], showing four P -value histograms for the tanh and sigmoid

activation functions for the 1 loop (1L) and the 2 loop (2L) integrals, obtained from that previous

investigation

Both of their errors were controlled by the network uncertainty v, shown in Figure 11a, as
most of their points are on the right hand side of their zero lines (x = 0 and x = 8). This
suggests that their errors are predominately determined by the noise of their estimates, meaning
that averaging more replicas would increase their accuracy, as discussed in section 4.2.
The sigmoid based networks were less accurate than the tanh based networks, because their

21

Ruben Bentley Performing Loop Integration Using Neural Networks

gradients are more vulnerable to vanishing [30]. The sigmoid function has a range between
zero and one, see Figure 12. For large negative values, the activation values saturate to zero,
and no longer contribute to the weighted sums in the next layer, Eq. (2.2). In deep-feedforward
networks this activation unit is referred to as a dead node, as it is effectively dead, no longer
contributing to the network’s learning.
However, the derivative of the neural network was trained. The derivative activation values, Eq.
(2.10), for the 1 loop integral, are written as a linear combination of the activation function’s
first three derivatives, and its backpropagated gradient w.r.t the weighted sum is written as a
combination of its first four derivatives, Eq. (3.4). Therefore, for large input values the deriva-
tive activation values (and their gradients) will saturate to zero, as the sigmoid’s derivatives are
all flat. A derivative activation unit, with large inputs, can be referred to as a dead node.
A large number of dead nodes reduces the effective size of the network, lowers its representa-
tional capacity, and severely inhibits its performance. Thus, sigmoid based networks train to
sub-optimal local minima.
The tanh function has a similar shape to the sigmoid, however it is bound between -1 and 1.
Dead nodes are less prevalent in tanh based networks, on account of its derivatives shapes.
They are larger in magnitude, and flatten less than the sigmoid for large values. Hence, tanh
based networks train to better local minima, giving them higher accuracy.
When the networks were initialised, their parameters θ required significant adjustments to min-
imise the loss, so the variance of the backpropagated gradients was larger initially. The variance
of the back-propagated gradients decreased during training, whilst the network was converging,
requiring smaller modifications to its parameters θ [30]. A steady decrease in the variance indi-
cated that the network was converging to an optimal solution.
The amount of averaged replicas was not the reason for the tanh’s superior accuracy, although
it assisted it. This was due to the decay of the backpropagated gradients variance being slower
in the tanh than the sigmoid, shown in Figure 18. This implied that dead nodes were more
common in the sigmoid based networks than the tanh based networks [30].

(a) (b)

FIG. 18: log10(standard deviations of the back-propagated gradients of weights), of each layer in the

network, during training. (a) sigmoid and (b) tanh, sampled over 20000 epochs.

22

Ruben Bentley Performing Loop Integration Using Neural Networks

5.4. GELU

The GELU [9] activation function is superior to the classical activation functions (softsign,
sigmoid and tanh) for many tasks [32], as shown through its application to the popular large
language model GPT-3 [33]. It can be expressed as:

GELU(x) = x · Φ(x), (5.6)

where the Φ(x) is a Gaussian cumulative distribution function:

Φ(x) =
1√
2π

∫ x

−∞
e−

t2

2 dt = P (X ≤ x) , X ∼ N(0, 1) . (5.7)

The GELU was approximated to:

GELU(x) = 0.5x
(
1 + tanh(

√
2

π
(x+ 0.044715x3)

)
, (5.8)

and its derivatives are present in Appendix A.
GELU based networks were the most accurate, with 3.9± 0.2 correct digits for the 3 layer 130
hidden unit network, and 3.8 ± 0.2 correct digits for the 10 by 60 hidden unit network. Their
errors were dominated by the noise of their estimates, Figure 11a (most points on the right hand
side), averaging more networks lowers their uncertainty.
Like the hyperbolic tangent, the higher order (2nd and above) derivative’s tails approach zero
slower than the sigmoid, and its derivatives also have large magnitudes. Its first derivative ap-
proaches one for large positive inputs and zero for large negative inputs, unlike the tanh, which
approaches zero for large inputs that are positive or negative.
This makes it less susceptible to the dead node problem, as for large positive inputs the higher
order derivatives will die, the first derivative terms remain, and still contribute to the learning.
For large negative inputs the derivative activation unit will die, so there is a level of network ef-
fective size reduction, but not as much as the classical activation functions. Its derivative terms
are more computational expensive than the derivatives of classical activation functions, so its
batch sizes were smaller.
The slight difference in the performance of the two GELU architectures (3 layer 130 hidden
units and 10 layer 60 hidden units) was due to the deeper network’s higher proneness to form-
ing dead nodes and smaller lattice size. It has less hidden units per layer, so dead nodes will
have a greater affect on the subsequent layers learning, as the weighted sums have less terms
contributing.
The size of the randomly sampled s-x rank-1 lattice given to the moderately sized network was
approximately three times larger than the deep network’s. They were trained for the same num-
ber of epochs, so the moderately sized network trained more points. The positive affects of
larger batch sizes is discussed in Section 5.4.1
The behaviour of the backpropagated gradients in both architectures was similar, with the vari-
ance of the outer layers remaining smallest and the first layer remaining largest throughout
training [30], Figure 19.

The activation values and derivative activation values in both architectures, produce stable
networks, which easily converge, Figure 20.

23

Ruben Bentley Performing Loop Integration Using Neural Networks

(a) (b)

FIG. 19: log10(standard deviations of the back-propagated gradients of weights), of each layer in the

network, during training. (a) 10 layer 60 hidden units GELU based network. (b) 3 layer 130 hidden unit

GELU based network.

5.4.1. GPU vs CPU

The training of the derivative neural networks was limited by the equipment’s memory, and
parallel processing capacity [34]. The 10 layer 60 hidden unit architecture trained with the
central processing unit (CPU), had a batch size 25 times smaller than this architecture trained
with the graphical processing unit (GPU). This CPU trained architecture had 3.4± 0.3 digits of
accuracy, approximately half a digit less than the GPU trained architecture, 3.8± 0.2 digits.
GPUs have thousands of cores that can perform tasks synchronously. This property is desired
for deep learning, as the GPU can perform large expensive tensor calculations more efficiently
than CPUs [34]. The CPU parallel processes data with lower efficiency than GPU.
Consequently, derivative networks that were trained with the GPU could have larger s-x lattice
sizes (batch sizes), exposing the network to more s-x points over training. The contrast between
the 10 layer 60 hidden units accuracy trained with the different machines, provides evidence
that the accuracy of the network increases with the size of the rank-1 s-x lattice.

5.4.2. CPU Trained GELU Architectures

The importance of network architecture was investigated when the batch size was fixed at
500 s-x combinations per s-x lattice, for the 3 layer 100 hidden unit architecture (moderately
sized network) and the 10 layer 30 hidden unit architecture (deeper network). Like the GPU
results, the moderately sized network slightly outperformed the deeper architecture (by 0.1
digits). Therefore, there is sufficient evidence that moderately sized architectures produce more
accurate integrals than deeper architectures. The accuracy is enhanced with large batch sizes.
Below are the histograms from the CPU investigation, Figure 21.
In particular, the R-value histogram, Figure 21c, of the moderately sized network (3 layer 100
hidden units) is more narrow, hence more accurate. The main source of error for the CPU
trained architectures was the noise in their estimates, Figure 21b (most values on the right).

24

Ruben Bentley Performing Loop Integration Using Neural Networks

(a) (b)

(c) (d)

FIG. 20: Mean (central line) and standard deviations (std = boundary of shaded region), for each layer

of the derivative neural network, collected during the training. The standard deviations (std) where

divided by a factor. Subplots (a) and (b) were obtained from the 10 layer 60 hidden unit GELU based

network, and subplots (c) and (d) were obtained from the 3 layer 130 hidden unit GELU based network.

(a)(c) Activation values (std/20). (b)(d) Derivative activation values (std/100).

(a) (b) (c)

FIG. 21: CPU trained averaged GELU replicas Histograms. (details shown in the Table I) (a) P -value

histogram, (b) Ratio of the uncertainty v and the true error. (c) R-value histograms

5.5. Cornering

The sampling of the s-x lattice was random. There was a higher density of sampled points
at the central regions of the s-x space. Thus, the network experienced cornerness [2], where the

25

Ruben Bentley Performing Loop Integration Using Neural Networks

network trained to the central region of the s-x space (sample space) more than the boundaries
of the phase space, Figure 22a.

(a)

(b)

FIG. 22: (a)Schematic diagram showing cornering, were the brighter regions are the more densely

sampled regions. The red ellipse is used as an aid to see the density (b) R-value histograms for the GPU

trained tanh and GELU architectures for the whole phase space (top) and the outer values (bottom,

inverted y axis) (−30 < si < −29.5 and −3 > si > −3.5)

Figure 22b shows the R-value histograms for the whole phase-space region (top) and the outer
region (bottom, inverted y axis) for phase-space parameters lying in −30 < si < −29.5 and
−3 > si > −3.5. The tanh outer region histogram is not centered at zero, so its estimates are
significantly different from the true values.
The GELU demonstrates comparable levels of generalisation between the outer region and the
whole phase-space region. It maintains its center (along 0), for the outer region, despite these
points being trained less. However, its histograms are slightly broader. This indicates that the
noise is high in these estimates, but their means are still accurate.

6. CONCLUSION

This paper continues the research of a new integration technique, that can solve Feynman
parameterised integrals faster than the PySecDec MC integrator, by training over a phase-space
region as well as the Feynman parameter space. It utilizes the parallel processing ability of
GPU to produce integrals much faster than PySecDec. In this technique, the derivative of the
network is fitted to the integrand of the integral, and the forward pass of the network was used
to find the integral.
An emergent activation function, GELU was applied to the derivative network architecture.
GELU based networks produced the most accurate integrals over the trained phase-space re-
gion (3.9± 0.2 digits), outperforming the previously tested tanh (3.4± 0.2 digits) and sigmoid

26

Ruben Bentley Performing Loop Integration Using Neural Networks

(2.9 ± 0.3 digits) activation functions. The shape of the GELU’s first derivative made it less
susceptible to dead node formation, than the classical activation functions. It also demonstrated
robustness against the negative affects of cornering and lower batch sizes
The Deeper GELU architectures had lower accuracy than the moderately sized architecture.
Further research is required to fully explain this, however it is potentially due to the higher
prevalence of dead derivative activation nodes in the deeper structure.
The derivative neural network architecture is unique, as unlike many other neural networks,
the shapes of its activation function’s higher order derivatives also contribute to the learning
of the network. This was supported by the softsign’s poor accuracy (0.8 ± 0.2 digits), which
demonstrated the importance that the higher order derivatives must be continuous for successful
convergence.
The sigmoid, tanh, and GELU activation’s errors were dominated by the noise present in in-
tegral estimates. Therefore, training more replicas would lower the uncertainty and improve
the accuracy of the replica averaged architectures. Future research should focus on applying
alternative activation functions, whose derivatives are less susceptible to vanishing and less
computationally expensive.
Architectures achieved higher accuracy when trained on more s-x points (larger s-x training
lattices). The accuracy was limited by the computational power of the training machines. Thus,
further research into optimising the size of the network with the lattice size is required to find
the perfect balance of phase-space exposure and representational capacity. The best sampling
method should be investigated, as the central regions of the sample space are more densely pop-
ulated with points (trained better). This technique can be applied to alternative research areas
such as quantum circuits [35]. A new neural network structure that can integrate the physical
region of phase-space should be investigated.

Acknowledgments

I would like to thank Professor Maître for our useful discussions on deep learning theories,
alternative activation functions (GELU), and troubleshooting. Also, I give my thanks to Paul
Clark, whom gave me access to the IPPP gpu machines.

References

[1] F. Bishara and M. Montull, “Machine learning amplitudes for faster event generation,”

Physical Review D, vol. 107, no. 7, p. L071901, 2023. [Online]. Available: https:

//link.aps.org/doi/10.1103/PhysRevD.107.L071901

[2] D. Maître and R. Santos-Mateos, “Multi-variable integration with a neural network,”

Journal of High Energy Physics, vol. 2023, no. 3, Mar. 2023. [Online]. Available:

http://dx.doi.org/10.1007/JHEP03(2023)221

[3] S. Borowka, G. Heinrich, S. Jahn, S. P. Jones, M. Kerner, and J. Schlenk, “Numerical

multiloop calculations: sector decomposition and qmc integration in pysecdec,” CERN

Yellow Reports: Monographs, vol. 3, pp. 185–185, 2020. [Online]. Available: https:

//doi.org/10.23731/CYRM-2020-003.185

27

https://link.aps.org/doi/10.1103/PhysRevD.107.L071901
https://link.aps.org/doi/10.1103/PhysRevD.107.L071901
http://dx.doi.org/10.1007/JHEP03(2023)221
https://doi.org/10.23731/CYRM-2020-003.185
https://doi.org/10.23731/CYRM-2020-003.185

Ruben Bentley Performing Loop Integration Using Neural Networks

[4] I. Hughes and T. Hase, Measurements and their uncertainties: a practical guide to modern error

analysis. OUP Oxford, 2010. [Online]. Available: https://doi.org/10.1111/j.1751-5823.2011.

00149_8.x

[5] R. Di Sipio, M. F. Giannelli, S. K. Haghighat, and S. Palazzo, “Dijetgan: a generative-adversarial

network approach for the simulation of qcd dijet events at the lhc,” Journal of high energy physics,

vol. 2019, no. 8, 2019. [Online]. Available: https://doi.org/10.1007/JHEP08(2019)110

[6] E. Bothmann, T. Janßen, M. Knobbe, T. Schmale, and S. Schumann, “Exploring phase space with

neural importance sampling,” SciPost Physics, vol. 8, no. 4, p. 069, 2020. [Online]. Available:

https://doi.org/10.21468/SciPostPhys.8.4.069

[7] M. D. Klimek and M. Perelstein, “Neural network-based approach to phase space integration,”

SciPost Phys., vol. 9, p. 053, 2020. [Online]. Available: https://doi.org/10.48550/arXiv.1810.11509

[8] J. Bendavid, “Efficient monte carlo integration using boosted decision trees and generative

deep neural networks,” arXiv preprint arXiv:1707.00028, 2017. [Online]. Available: https:

//doi.org/10.48550/arXiv.1707.00028

[9] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),” arXiv preprint

arXiv:1606.08415, 2016. [Online]. Available: https://doi.org/10.48550/arXiv.1606.08415

[10] “A portrait of the higgs boson by the cms experiment ten years after the discovery,” Nature, vol.

607, no. 7917, pp. 60–68, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04892-x

[11] A. Collaboration et al., “Observation of a new particle in the search for the standard model

higgs boson with the atlas detector at the lhc,” arXiv preprint arXiv:1207.7214, 2012. [Online].

Available: https://doi.org/10.1016/j.physletb.2012.08.020

[12] M. Mühlleitner, J. Schlenk, and M. Spira, “Top-yukawa-induced corrections to higgs pair

production,” Journal of High Energy Physics, vol. 2022, no. 10, pp. 1–15, 2022. [Online].

Available: https://doi.org/10.1007/JHEP10(2022)185

[13] J. Baglio, A. Djouadi, R. Gröber, M. M. Mühlleitner, J. Quevillon, and M. Spira, “The measurement

of the higgs self-coupling at the lhc: theoretical status,” Journal of High Energy Physics, vol.

2013, no. 4, pp. 1–40, 2013. [Online]. Available: https://doi.org/10.1007/JHEP04(2013)151

[14] T. Plehn, M. Spira, and P. Zerwas, “Pair production of neutral higgs particles in gluon-gluon

collisions,” Nuclear Physics B, vol. 479, no. 1-2, pp. 46–64, 1996. [Online]. Available:

https://doi.org/10.1016/0550-3213(96)00418-X

[15] ——, “Pair production of neutral higgs particles in gluon-gluon collisions,” Nuclear Physics B, vol.

479, no. 1-2, pp. 46–64, 1996. [Online]. Available: https://doi.org/10.1016/0550-3213(96)00418-X

[16] E. N. Glover and J. J. Van der Bij, “Higgs boson pair production via gluon fusion,”

Nuclear Physics B, vol. 309, no. 2, pp. 282–294, 1988. [Online]. Available: https:

//doi.org/10.1016/0550-3213(88)90083-1

[17] R. P. Feynman, “Space-time approach to quantum electrodynamics,” Phys. Rev., vol. 76, pp.

769–789, Sep 1949. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRev.76.769

[18] G. U. Jakobsen, G. Mogull, J. Plefka, B. Sauer, and Y. Xu, “Conservative scattering of spinning

black holes at fourth post-minkowskian order,” Physical Review Letters, vol. 131, no. 15, p.

151401, 2023. [Online]. Available: https://doi.org/10.1103/PhysRevLett.131.151401

[19] S. Lloyd, R. A. Irani, and M. Ahmadi, “Using neural networks for fast numerical integration

and optimization,” IEEE Access, vol. 8, pp. 84 519–84 531, 2020. [Online]. Available:

28

https://doi.org/10.1111/j.1751-5823.2011.00149_8.x
https://doi.org/10.1111/j.1751-5823.2011.00149_8.x
https://doi.org/10.1007/JHEP08(2019)110
https://doi.org/10.21468/SciPostPhys.8.4.069
https://doi.org/10.48550/arXiv.1810.11509
https://doi.org/10.48550/arXiv.1707.00028
https://doi.org/10.48550/arXiv.1707.00028
https://doi.org/10.48550/arXiv.1606.08415
https://doi.org/10.1038/s41586-022-04892-x
https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1007/JHEP10(2022)185
https://doi.org/10.1007/JHEP04(2013)151
https://doi.org/10.1016/0550-3213(96)00418-X
https://doi.org/10.1016/0550-3213(96)00418-X
https://doi.org/10.1016/0550-3213(88)90083-1
https://doi.org/10.1016/0550-3213(88)90083-1
https://link.aps.org/doi/10.1103/PhysRev.76.769
https://doi.org/10.1103/PhysRevLett.131.151401

Ruben Bentley Performing Loop Integration Using Neural Networks

https://dx.doi.org/10.1109/ACCESS.2020.2991966

[20] N. M. Nawi, W. H. Atomi, and M. Z. Rehman, “The effect of data pre-processing on optimized

training of artificial neural networks,” Procedia Technology, vol. 11, pp. 32–39, 2013. [Online].

Available: https://doi.org/10.1016/j.protcy.2013.12.159

[21] D. P. Laurie, “Periodizing transformations for numerical integration,” Journal of computational

and applied mathematics, vol. 66, no. 1-2, pp. 337–344, 1996. [Online]. Available:

https://doi.org/10.1016/0377-0427(95)00196-4

[22] F. Y. Kuo, I. H. Sloan, and H. Woźniakowski, “Periodization strategy may fail in

high dimensions,” Numerical Algorithms, vol. 46, pp. 369–391, 2007. [Online]. Available:

https://doi.org/10.1007/s11075-007-9145-8

[23] G. Peter Lepage, “A new algorithm for adaptive multidimensional integration,” Journal

of Computational Physics, vol. 27, no. 2, pp. 192–203, 1978. [Online]. Available:

https://doi.org/10.1016/0021-9991(78)90004-9

[24] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint

arXiv:1412.6980, 2014. [Online]. Available: https://doi.org/10.48550/arXiv.1412.6980

[25] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations by error

propagation, parallel distributed processing, explorations in the microstructure of cognition, ed.

de rumelhart and j. mcclelland. vol. 1. 1986,” Biometrika, vol. 71, pp. 599–607, 1986. [Online].

Available: https://doi.org/10.1038/323533a0

[26] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, L. Antiga et al., “Pytorch: An imperative style, high-performance deep learning

library,” Advances in neural information processing systems, vol. 32, 2019. [Online]. Available:

https://doi.org/10.48550/arXiv.1912.01703

[27] I. Goodfellow, Y. Bengio, and A. Courville, “Deep learning,” pp. 276–281, 2016. [Online].

Available: http://www.deeplearningbook.org

[28] A. M. Saxe, J. L. McClelland, and S. Ganguli, “Exact solutions to the nonlinear dynamics

of learning in deep linear neural networks,” arXiv preprint arXiv:1312.6120, 2013. [Online].

Available: https://doi.org/10.48550/arXiv.1312.6120

[29] A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun, “The loss surfaces

of multilayer networks,” pp. 192–204, 2015. [Online]. Available: https://doi.org/10.48550/arXiv.

1412.0233

[30] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural

networks,” in Proceedings of the thirteenth international conference on artificial intelligence

and statistics. JMLR Workshop and Conference Proceedings, 2010, pp. 249–256. [Online].

Available: https://proceedings.mlr.press/v9/glorot10a.html

[31] J. Turian, J. Bergstra, and Y. Bengio, “Quadratic features and deep architectures for chunking,”

in Proceedings of Human Language Technologies: The 2009 Annual Conference of the North

American Chapter of the Association for Computational Linguistics, Companion Volume: Short

Papers, M. Ostendorf, M. Collins, S. Narayanan, D. W. Oard, and L. Vanderwende, Eds.

Boulder, Colorado: Association for Computational Linguistics, Jun. 2009, pp. 245–248. [Online].

Available: https://aclanthology.org/N09-2062

[32] M. Lee, “Gelu activation function in deep learning: a comprehensive mathematical

29

https://dx.doi.org/10.1109/ACCESS.2020.2991966
https://doi.org/10.1016/j.protcy.2013.12.159
https://doi.org/10.1016/0377-0427(95)00196-4
https://doi.org/10.1007/s11075-007-9145-8
https://doi.org/10.1016/0021-9991(78)90004-9
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1038/323533a0
https://doi.org/10.48550/arXiv.1912.01703
http://www.deeplearningbook.org
https://doi.org/10.48550/arXiv.1312.6120
https://doi.org/10.48550/arXiv.1412.0233
https://doi.org/10.48550/arXiv.1412.0233
https://proceedings.mlr.press/v9/glorot10a.html
https://aclanthology.org/N09-2062

Ruben Bentley Performing Loop Integration Using Neural Networks

analysis and performance,” arXiv preprint arXiv:2305.12073, 2023. [Online]. Available:

https://doi.org/10.48550/arXiv.2305.12073

[33] L. Floridi and M. Chiriatti, “Gpt-3: Its nature, scope, limits, and consequences,” Minds

and Machines, vol. 30, pp. 681–694, 2020. [Online]. Available: https://doi.org/10.1007/

s11023-020-09548-1

[34] I. Goodfellow, Y. Bengio, and A. Courville, “Deep learning,” pp. 431–434, 2016. [Online].

Available: http://www.deeplearningbook.org

[35] J. M. Cruz-Martinez, M. Robbiati, and S. Carrazza, “Multi-variable integration with a

variational quantum circuit,” arXiv preprint arXiv:2308.05657, 2023. [Online]. Available:

https://doi.org/10.48550/arXiv.2308.05657

Summary For General Audience

The Large Hadron Collider (LHC) is transitioning from a particle discover to a precision ma-
chine. The LHC collides protons at very high energies. During these collisions lots of scatter-
ing events happen, where new particles are produced and interact with other particles. A large
amount of data is collected during these collisions, and there are various techniques to calculate
probabilities for specific processes occurring. One such event is Higgs boson pair production
Figure 2, where two gluons fuse via a virtual top quark loop to produce two Higgs bosons.
This diagram has an associated scattering amplitude. Scattering amplitudes can be used to
give probabilities with further computation. Currently, the most popular method to calculate
scattering amplitudes is Monte Carlo (MC) integration. The MC integrators are slow. This
paper introduces an alternative technique utilizing neural network technology. This approach
can calculate scattering amplitudes approximately one hundred times faster than the popular
MC integration program, PySecDec. There are added environmentally friendly benefits to this
finding. It is still an ongoing area of research.

FIG. 2: Feynman diagram for Higgs boson pair production, from a virtual bottom/top quark loop.

Figure 1l from the [10].

30

https://doi.org/10.48550/arXiv.2305.12073
https://doi.org/10.1007/s11023-020-09548-1
https://doi.org/10.1007/s11023-020-09548-1
http://www.deeplearningbook.org
https://doi.org/10.48550/arXiv.2308.05657

Ruben Bentley Performing Loop Integration Using Neural Networks

Appendix A: Activation Function Derivatives

Below the derivatives of the activation functions ϕ, used for the derivative neural network
activation value differentials, are listed.
The derivatives for the Hyperbolic Tangent (tanh(x) = T)

ϕ(x) = T

ϕ(1)(x) = (1− T)(1 + T)

ϕ(2)(x) = −2(1− T)T (1 + T)

ϕ(3)(x) = −2(1− T)(1 + T)(1− 3T 2)

ϕ(4)(x) = 8(1− T)T (1 + T)(2− 3T 2)

ϕ(5)(x) = 8(1− T)(1 + T)(2− 15T 2 + 15T 4)

ϕ(6)(x) = −16(1− T)T (1 + T)(17− 60T 2 + 45T 4)

The derivatives for the Logistic Sigmoid (= σ)

ϕ(x) = σ

ϕ(1)(x) = σ(1− σ)

ϕ(2)(x) = σ(1− σ)(1− 2σ)

ϕ(3)(x) = σ(1− σ)(1− 6σ + 6σ2)

ϕ(4)(x) = σ(1− σ)(1− 2σ)(1− 12σ + 12σ2)

ϕ(5)(x) = σ(1− σ)(1− 30σ + 150σ2 − 240σ3 + 120σ4)

ϕ(6)(x) = σ(1− σ)(1− 2σ)(1− 60σ + 420σ2 − 720σ3 + 360σ4)

The derivatives for the Softsign
ϕ(x) = x

1+|x|
ϕ(1)(x) = 1

(1+|x|)2

ϕ(2)(x) = − 2x
|x|(1+|x|)3

ϕ(3)(x) = 6
(1+|x|)4

ϕ(4)(x) = − 24x
|x|(1+|x|)5

For the GELU:
arg =

√
2
π
(x+ 0.044715x3) , arg2 =

√
2
π
(1 + 0.134145x2) ,

arg3 =
√

2
π
(0.26829x) , arg4 =

√
2
π
(0.26829)

d
dx

(
tanh(arg)

)
= arg2 · sech2(arg)

d2

d2x

(
tanh(arg)

)
= arg3 · sech2(arg) + arg2 · d

dx

(
sech2(arg)

)
d3

d3x

(
tanh(arg)

)
= arg4 · sech2(arg) + 2 · arg3 · d

dx

(
sech2(arg)

)
+ arg2 · d2

d2x

(
sech2(arg)

)
d4

d4x

(
tanh(arg)

)
=

arg4 · d
dx

(
sech2(arg)

)
+ 2 · arg4 · d

dx

(
sech2(arg)

)
+ 2 · arg4 · d3

d3x

(
sech2(arg) +

2 · arg3 · d2

d2x

(
sech2(arg)

)
d
dx

(
sech2(arg)

)
= −2 · arg2 · tanh(arg) · sech2(arg)

d2

d2x

(
sech2(arg)

)
=

−2
(
arg2 ·tanh(arg) · d

dx

(
sech2(arg)

)
+arg2 ·sech2(arg) · d

dx

(
tanh(arg)

)
+arg3 ·tanh(arg) ·

sech2(arg)
)

31

Ruben Bentley Performing Loop Integration Using Neural Networks

d3

d3x

(
sech2(arg)

)
=

− 2
(
arg3 · tanh(arg) · d

dx

(
sech2(arg)

)
+ arg2 · tanh(arg) · d2

d2x

(
sech2(arg)

)
+ arg2 ·

d
dx

(
tanh(arg)

)
· d
dx

(
sech2(arg)

)
+arg3 ·sech2(arg) · d

dx

(
tanh(arg)

)
+arg2 · d

dx

(
sech2(arg)

)
·

d
dx

(
tanh(arg)

)
+ arg2 · sech2(arg) · d2

d2x

(
tanh(arg)

)
+ arg4 · tanh(arg) · sech2(arg)+ arg3 ·

d
dx

(
tanh(arg)

)
· sech2(arg) + arg3 · tanh(arg) · d

dx

(
sech2(arg)

))
These are used to give the derivatives of the GELU:

ϕ(x) = 0.5x(1 + tanh(
√

2
π
(x+ 0.044715x3)))

ϕ(1)(x) = 0.5(1 + tanh(arg) + x d
dx

(
tanh(arg)

)
ϕ(2)(x) = d

dx

(
tanh(arg)

)
+ 0.5x d2

d2x

(
tanh(arg)

)
ϕ(3)(x) = 1.5 d2

d2x

(
tanh(arg)

)
+ 0.5x d3

d3x

(
tanh(arg)

)
ϕ(4)(x) = 2 d3

d3x

(
tanh(arg)

)
+ 0.5x d4

d4x

(
tanh(arg)

)

Appendix B: Optimiser

The network parameters θ were updated with the ADAM [24] optimiser, in a training loop.
ADAM combines the best assets from adaptive learning rate and momentum based optimisers
- making it highly effective for training deep neural networks. It is computationally efficient,
widely used, and easy to implement. ADAM adapts the learning rate for individual network
parameters θ, by tracking an exponential moving average for the first moment st, and second
moment rt. The moments are controlled by the exponential decay rates ρ1 and ρ2 respectively,
and are bias corrected. The decay rate hyper-parameters did not require tuning for the network
to converge to good local minima. The algorithm is shown below.

Algorithm 1 ADAM algorithm
Require: ϵ: learning rate

Require: ρ1, ρ2 ∈ [0,1): Exponential decay rates for moment estimates, set to 0.9 and 0.999 respectively

Require: small constant δ used for numerical stabilisation

Require: θ0: Initial parameters

s0 = 0 and r0 = 0: Initialise 1st and 2nd moment variables

t = 0: Initialise time step

while θt not converged do
gt ← ∇θL(θt): compute gradients of the loss function

t← t+ 1

st ← ρ1 · st−1 + (1− ρ1) · gt: update biased first moment estimate

rt ← ρ2 · rt−1 + (1− ρ2) · g2t : update biased second moment estimate

ŝt ← st
1−ρt1

: correct bias in first moment

r̂t ← rt
1−ρt2

: correct bias in second moment

∆θ = −ϵ ŝ√
r̂+δ

: operations applied element wise

θ ← θ +∆θ: update parameters

end while

32

Ruben Bentley Performing Loop Integration Using Neural Networks

Appendix C: Machine Performance Parameters

Number of CPU Cores Number of Threads Base Clock Speed Max Turbo Clockspeed L3 cache

8 16 3.6 GHz 4.4 GHz 8MB

TABLE III: Paramters of the CPU AMD Ryzen 7 Processor

33

	Contents
	Introduction
	The Parametric Integral
	On Higgs Pair Production

	Architecture Overview
	Deep Feedforward Networks
	Derivative of the Neural Network
	Pre-processing

	Back Propagation and Gradient Descent
	Theory of Training Deep Networks
	Loss Optimisation Landscape
	Replicas
	Xavier Initialisation
	Learning Rate

	Results
	Activation Functions (x)
	Softsign
	The Logistic Sigmoid and the Hyperbolic Tangent
	GELU
	GPU vs CPU
	CPU Trained GELU Architectures

	Cornering

	Conclusion
	Acknowledgments
	References
	Summary For General Audience
	Activation Function Derivatives
	Optimiser
	Machine Performance Parameters

