
Keno in Macau: A Brief Investigation of Its

Mechanics and Risks

Ruben Bentley

August 2024

1 Background

After my graduation, I went travelling around Asia, where I visited some casi-
nos in Macau (MGM and Venetian casinos). I was introduced to Keno, a game
originating from ancient china with similarities to the modern lottery.
Keno is played on a board with 80 numbers, each round 20 random numbers
are highlighted. Players select a specific number of ”pins” (numbers), with the
payout increasing as they correctly select more. However, the more pins you
choose, the lower the payout for each correct pin. This creates an important
trade-off: opting for more pins increases the probability of hitting a winning
number, while fewer pins offer the potential for higher payouts.

The probability of matching x pins in an N pin game is shown in Eq. (1),

P (x|N) =

(
N
x

)
×

(
80−N
20−x

)(
80
20

) . (1)

where:

• P (x|N) is the conditional probability of matching x numbers given N
pins.

•
(
N
x

)
is the combinations the x matching pins take.

•
(
80−N
20−x

)
is the combinations the rest of the drawn pins take.

•
(
80
20

)
is the total combinations.

The expected values and probabilities where calculated for specific instances
occurring in this Keno game. 10 pin Keno was shown to have a positive expected
value (Eq. 2), for the odds given (shown in Table 1). Using Eq. (3), we can
calculate the probabilities of the events shown in Table 1, with the fair decimal
odds being the reciprocal of the true odds.

1

EV =

[
10∑
x=5

pay-out(x) · P (x|10)

]
− stake

= 3 · 0.05143 + 15 · 0.01148 + 100 · 0.001611 + 1, 000 · 0.0001354
+ 25, 000 · 0.000006121 + 2, 500, 000 · 0.00000001122− 1 = 0.05655 ≈ 0.06

(2)

Matching Pins x Probability P (x|10) Fair decimal odds Real odds

5 0.05143 19.44 3.00
6 0.01148 87.11 15.00
7 0.001611 620.70 100.00
8 0.0001354 7384.00 1000.00
9 6.121e-06 163400 25000.00
10 1.122e-07 8912000 2500000.00

Table 1: 10 pin game statistics to 4 significant figures for a unit stake of 1

P (x|10) =
(
10
x

)
×
(

70
20−x

)(
80
20

) . (3)

2 Simulations

A Keno code was written to simulate the game. The foundation of the code was
as follows,

class Keno():

def __init__(self, stake, user_picks, odds):

self.stake = stake

self.odds = odds

self.draws = []

self.user_picks = user_picks

assert len(self.user_picks) == 10

def randomly_draw_keno(self):

self.draws = [random.randint(1, 80) for _ in range(20)] #get 20

random integers between 1 and 80

def find_matches(self):

self.matching = len([num for num in self.user_picks if num in

self.draws]) #match the numbers

return self.matching

def find_payout(self):

2

self.payout = self.odds.get(self.matching, 0) #work out payout

from the odds dictionary

return self.payout

The implementation of this class is as follows,

#set odds from sheet

odds = {

5: 3,

6: 15,

7: 100,

8: 1000,

9: 25000,

10: 2500000

}

#select my picks

selection = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

#setup class

game = Keno(

stake=1,

user_picks=selection,

odds=odds

)

#draw the numbers

game.randomly_draw_keno()

#see how many match

matches = game.find_matches()

#find the payout

payout = game.find_payout()

#print statements

print(f"Keno numbers: {game.draws}")

print(f"Your numbers: {game.user_picks}")

print(f"Matches: {matches}")

print(f"Payout: ${payout}")

Once running it,

Keno numbers: [26, 2, 59, 60, 68, 50, 28, 62, 48, 73, 20, 44, 72, 25,

77, 38, 62, 31, 67, 59]

Your numbers: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Matches: 1

Payout: $0

3

From this simple class, more complex functions where constructed to run Monte
Carlo simulations of the Keno games. This code can be seen in Appendix A.
Table 2, shows the parameters of two player archetypes,

Player x Pot (£) Bankroll Management Strategy

Ordinary 100 fixed £1 payments
Mathematician Arbitarily large Kelly Criterion

Table 2: Player descriptions

The Ordinary player plays with with a small pot and places fixed £1 payments,
whilst the mathematician attempts to maximise profits using the Kelly criterion
Eq. 4 and has a large pot to mitigate risk.

f∗ =
bp− q

b
(4)

where:

• b is the decimal odds - 1

• p is the probability of winning (add up probabilities shown in Table 1).

• q = 1-p the probability of losing.

Matching Pins x p b f∗

5 0.05143 2.00 -0.4228
6 0.01148 14.00 -0.05913
7 0.001611 99.00 -0.008474
8 0.0001354 999.00 -0.0008654
9 6.121e-06 24999.00 -3.388e-05
10 1.122e-07 2499999.00 -2.878e-07
sum - - -0.4914

Table 3: Kelly fractions for x pins out of 10

Table 3 tells us the mathematician would avoid this game, whilst using the
Kelly criterion bankroll strategy.
The expected value is positive (≈ 6%), which means that the player has an
advantage in the long run, but the caveat is that the initial high volatility (large
loss potential) may prevent the player from becoming profitable if they have a
small pot.
This is shown for a gambler with a £100 pot (small pot) who places £1 bets
each game. They are very likely to end their games in ruin, as shown in the
bottom panel of Figure 1, where the percentage of simulations that tend to
ruin approaches 100%, and also the percentage of gamblers who beat the EV

4

Figure 1: 1,000,000 Monte Carlo simulations for a £100 pot player playing 10
pin Keno. The top panel shows the log10(Total Pot) as the Gambler plays more
games, some simulations, the initial pot, as well as the mean and standard error
of the simulations. The middle panel shows the percentage of simulations above
the EV and initial pot. The bottom panel shows the percentage of simulations
that reached ruin (run out of money).

decreases for a higher number of games played (middle panel).
This is contrary to the theoretical understanding of a positive EV and the law
of large numbers. This is due to the high volatility present in the game, and
negative Kelly bankroll. In addition the middle panel also shows that the per-
centage of profitable gamblers decreases with a higher number of games played,
and the top panel shows that the mean pot for each game (simulation step)
decreases as more games are played, and the standard error increases.
The mean pot decreases as more simulated gamblers hit ruin and fail to reach
high payouts, let alone reaching EV. The increase in the standard error tells us
that there is a higher variability for more games played, meaning high payouts
happen, however a pot large enough to sustain you for this to possibly to hap-
pen is not practical or prohibited within the casinos of Macau.

5

The data tells us that this game should not played, because the theoretical
implications (positive EV and law of large numbers) are outweighed by the high
volatility (and negative Kelly bankroll) which is caused by: the large difference
in payout magnitude, small probability of getting a high payout, and the binary
nature of the game.

3 Biased Keno Game

You can statistically justify specific numbers being over selected with a hypoth-
esis test,

• Null Hypothesis H0: the probability of selecting any number during a
game of Keno is equal to 1

4 .

• Alternate HypothesisH1: the distribution of number selection is not equal.

We will use a 5% significance level (α), and find the p-value.

• If p-value < α we reject the H0.

• If p-value >= α we accept the H0,

With the aid of a high number of simulations (for statistical significance), we
can find the χ2 statistic Eq. (5).

χ2 =
∑ (observed− expected)2

expected
(5)

The chi-square cumulative distribution function can be used to find the p value,
to complete the analysis shown above.
A class was created to store all relevant functions for this experiment.

class KenoNumbersDistribution:

def __init__(self, num_split, draw_split, simulations):

self.simulations = simulations

self.split = num_split

self.draw_split = draw_split

def number_counter(self):

self.counts = np.zeros(80, dtype=int)

for _ in range(self.simulations):

draws1 = [random.randint(self.split, 80) for _ in

range(self.draw_split)]

draws2 = [random.randint(1, self.split-1) for _ in range(20 -

self.draw_split)]

self.draws = []

self.draws.extend(draws1) # Faster than np.concatenate

self.draws.extend(draws2)

6

for num in self.draws:

self.counts[num - 1] += 1 # Adds count to each number in

the counts array

return self.counts

def chi_square_function(self):

self.expected = 20 * self.simulations / 80 # Draws * sims /

numbers

self.chi_square = np.zeros(80)

run_count = 0

for value in self.counts:

self.chi_square[run_count] = ((self.expected - value) ** 2) /

self.expected

run_count += 1

return np.sum(self.chi_square)

def p_value(self):

self.p_value = 1 - chi2.cdf(np.sum(self.chi_square), 79) # 79

degrees of freedom (80 - 1)

return self.p_value

def run_simulations(self):

self.number_counter()

self.chi_square_function()

return self.p_value()

For proof of concept, the distribution of the drawn numbers was artificially
disrupted.
This was accomplished by creating a drawing system that splits the 80 numbers
into two at the num split point, and samples the larger numbers draw split
times out of the 20. This method can be used to create a Keno game where the
numbers are not evenly distributed.
The implementation of the class for the disrupted number distribution is as
follows,

question6 = KenoNumbersDistribution(

num_split=76,

draw_split=4,

simulations=10000000

)

question6.run_simulations()

These parameters ensured that the percentage of numbers that are selected from
76 to 80 was 20% (4% per number) compared to 80% for numbers between 1
and 75 (≈ 1% per number). The result is as follows,

p-value = 0.04 < α (6)

Therefore, there is significant evidence to reject the H0, and statistically justify

7

that the numbers are not normally distributed.

For completion, tests were done for a fair Keno game, and its implementation
is shown below.

question6 = KenoNumbersDistribution(

num_split=80,

draw_split=0,

simulations=10000000

)

question6.run_simulations()

Which gives,
p-value = 0.5958 > α (7)

Thus, we accept the H0, which is expected.
To perform these experiments, a high number of simulations was used to ensure
statistical significance.

4 Further Work

Investigate other Keno games (all pin game possibilities), and develop strategies
to mitigate long term risks in mathematically favourable circumstances. Explore
the demographics of players, and identify common patterns in player behaviour
using machine learning models.

A Appendix: Full Keno Class

class Keno():

def __init__(self, stake, user_picks, odds):

self.stake = stake

self.odds = odds

self.draws = []

self.user_picks = user_picks

assert len(self.user_picks) == 10

def randomly_draw_keno(self):

self.draws = [random.randint(1, 80) for _ in range(20)] #get 20

random integers between 1 and 80

def find_matches(self):

self.matching = len([num for num in self.user_picks if num in

self.draws]) #match the numbers

return self.matching

def find_payout(self):

8

self.payout = self.odds.get(self.matching, 0) #work out payout

from the odds dictionary

return self.payout

def play_game(self): #this is used in the

monte_carlo_simulation_cinematic

self.randomly_draw_keno()

self.find_matches()

payout = self.find_payout()

self.balance += payout - self.stake

return self.balance

def monte_carlo_simulation_cinematic(self, simulations,

initial_balance, plays): #this monte_carlo stores all the

simulations data, and is used for plotting

self.all_balance_history = []

for _ in range(simulations):

self.balance = initial_balance

self.balance_history = []

step = 0

while step < plays: #gives the oppurtunity to play a maximum

number of goes (plays) or until you ruin

if self.balance > 0:

self.balance_history.append(self.play_game())

else:

self.balance_history.append(0)

step += 1

self.all_balance_history.append(self.balance_history)

return self.all_balance_history

def monte_carlo_simulation(self, simulations, initial_balance,

plays):

#this one average every simulation step (game played)

self.balance = initial_balance

self.averages = [0] * plays

self.averages[0] = initial_balance

self.standard_deviations = [0] * plays

counting the number above the EV and inital pot, and the

number of ruined simulations

self.count_above_EV = [0] * plays

self.count_above_pot = [0] * plays

self.count_ruin = [0] * plays

#load the current state with initial balance

self.current_state = [initial_balance] * simulations

self.next_state = [0] * simulations

need to load the next state with payouts from plays #vectorise

it to make it faster

for play in range(1, plays):

for sim in range(0, simulations):

9

if self.current_state[sim] > 0: # Check if the current

balance is greater than 0

self.randomly_draw_keno()

self.find_matches()

payout = self.find_payout()

self.next_state[sim] = self.current_state[sim] +

payout - self.stake # stake

if self.next_state[sim] > initial_balance:

self.count_above_pot[play] += 100/simulations

if self.next_state[sim] > EV(play) +

initial_balance:

self.count_above_EV[play] += 100/simulations #

get a percentage

else:

self.next_state[sim] = 0 # Set the balance to 0 if it

goes below 0

self.count_ruin[play] += 100/simulations

self.averages[play] = np.mean(self.next_state)

self.standard_deviations[play] = np.std(self.next_state)

self.current_state = self.next_state

print(f’play{play+1}’, self.current_state, f’avr{play+1}’,

self.averages, f’std{play+1}’, self.standard_deviations,

f’count_EV{play+1}’, self.count_above_EV,

f’count_pot{play+1}’, self.count_above_pot,

f’count_ruin{play+1}’, self.count_ruin)

return self.averages, self.standard_deviations,

self.current_state, self.count_above_EV,

self.count_above_pot, self.count_ruin

The implementation of the class is as follows (for a gambler with £1000, playing
1000 goes, simulated 1 million times),

initial_balance = 1000

simulations = 1000000

plays = 1000

game = Keno(

stake=1,

user_picks=selection,

odds=odds

)

averages, std, current, above_EV , above_pot, ruin =

game.monte_carlo_simulation(simulations=simulations,initial_balance=initial_balance,

plays=plays)

10

